## Luca Incurvati’s Conceptions of Set, 12

We turn then to Chapter 6 of Luca’s book, ‘The Stratified Conception’.
This chapter starts with a brief discussion of Russell’s aborted ‘zigzag’ theory, which tries to modify naive comprehension by requiring that it applies only to sufficiently “simple” properties (or rather, simple propositional functions). It seems that Russell thought of the required simplicity as being reflected in a certain syntactic simplicity in expressions for the relevant properties. But he never arrived at a settled view about how this could be spelt out. It is only later that we get a developed set theory which depends on the comprehension principle being constrained by a syntactic condition. In Quine’s NF, the objects which satisfy a predicate A form a set just when A is stratifiable — when we can assign indices to its (bound) variables so that the resulting A* would be a correctly formed wff of simple type theory. And so the rest of Chapter 6 largely concerns NF.
Luca also touches on NFU, the version of Quine’s theory which allows urelemente. And — though this is a matter of emphasis — I’m was a bit surprised that the main focus here isn’t more consistently on this version. At the beginning of the book, Luca seems to hold that the most natural form of a set theory should allow for individuals: thus he describes the iterative conception (for example) as being of a universe which starts with individuals, and then builds up a hierarchy of sets from them. And if, when considering its technical development, we then concentrate on an iterative set theory without individuals, that’s because of easy equi-consistency results: adding urelements to ZFC’s theory of pure sets doesn’t change the scene in a deep way, so for many purposes it just doesn’t matter whether we discuss ZFC or ZFCU. But, famously, it isn’t like this with NF vs NFU. The consistency status of NF is still moot (Randall Holmes claims a proof, but its degree of opacity remains extremely high), and NF is. . .

News source: Logic Matters